2015. 4. 춘계심장학회

Macrophage Polarization and Functional Phenotypes in Cardiovascular Disease

전남대학교병원 심혈관센터 순환기내과

안영근

Cardiac injury and sensing damaged tissue

Macrophage Lineages, Ontogeny, and Contribution to Resident Tissue Macrophages

Immunity. 2014;41:21-35

Non	Role of post-MI	
	Phagocytosis	Remove necrotic myocytes and apoptotic neutrophils
	Chemotaxis	Recruit additional macrophages to injury site to amplify response
	Secretion	Regulate scar formation by secreting growth factors, angiogenic factors, and MMPs
	Angiogenesis	Restore blood flow
		Int J Cardiol. 2008;130;147–1;

23. 58. Cardiovasc Res. 2014;102:240-8.

Mouse / CX3CR1^{GFP/+}

Human / CD68

Arter Thromb Vasc Biol. 2009;29:1419–1423. Circulation. 2010;121:2437-2445. Circ Res. 2014;114:1611-22.

1. Regulation of Macrophage Polarization in Infarcted Myocardium by Stem cells

ORIGINAL ARTICLE

Experimental & Molecular Medicine (2013) 45, e00; doi:10.1038/emm.2013.135 © 2013 KSBMB. All rights reserved 2092-6413/13

npg

www.nature.com/emm

Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages

Dong-Im Cho¹, Mi Ra Kim¹, Hye-yun Jeong¹, Hae Chang Jeong², Myung Ho Jeong^{2,3}, Sung Ho Yoon⁴, Yong Sook Kim^{1,3} and Youngkeun Ahn^{2,3}

MSCs regulated iNOS and Arg1 reciprocally in activated BMDMs

The iNOS decreased, however, the arginase-1 increased in BMDMs co-cultured with MSCs.

The enzymatic activities of iNOS and arginase-1

MSCs regulated iNOS and arginase-1 reciprocally in activated BMDMs.

*p<0.05, **p<0.01, ***p<0.001

The identification of arginase-1-expressing macrophages in infarct myocardium

Arg1-expressing CD68 (+) macrophages (yellow) near DAPIlabeled MSCs (blue) were observed in the infarct zone.

1w after tx

*p<0.05

Inflammation-related cytokine secretions from BMDMs analyzed by protein array

2. IRF-1 as an Effector of 5-azacytidine in Activated Macrophages

5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect

Azacitidine (5-azacytidine) Hiroaki Kodama,¹ Jing Pan,¹ Motoaki Sano,¹ Toshiyuki Takahashi,¹ Shingo Hori,¹ Hitoshi Abe,² Jun-ichi Hata,² Akihiro Umezawa,² and Satoshi Ogawa¹

J Clin Invest. 1999;103:697-705

Reduced Cardiac Fibrosis by 5AZ Treatment; MI Model

MI+PBS

*p<0.05

SD rats (weighing 200-230 g) Tx after 1d of MI, 5AZ (2.5 mg/kg) every other d via ip for 2w

No. of Cd68(+) cells /0.25mm² Infarct zone

MI+5AZ

JCMM. 2014;18:1018-1027

Preserved Cardiac Function by 5AZ Treatment; MI Model

Inhibition of NO Generation and iNOS by 5AZ Treatment

RAW264.7 murine monocyte/macrophage cell line PGN (10 μ g/ml) 5AZ (10 μ M)

Requirement for Transcription Factor IRF-1 in NO Synthase Induction in Macrophages

R. Kamijo,* H. Harada, T. Matsuyama, M. Bosland,

J. Gerecitano, D. Shapiro, J. Le, S. I. Koh, T. Kimura,

Requirement for Trai S. J. Green, T. W. Mak, T. Taniguchi, J. Vilček[†] Author(s): R. Kamijo, H. Harada, T. Matsuyama, M. Bosland, J. Gerecitano, D. Shapiro, J. Le, S. I. Koh, T. Kimura, S. J. Green, T. W. Mak, T. Taniguchi and J. Vilček Source: *Science*, New Series, Vol. 263, No. 5153 (Mar. 18, 1994), pp. 1612-1615 Published by: <u>American Association for the Advancement of Science</u> Stable URL: <u>http://www.jstor.org/stable/2883662</u> Accessed: 29/08/2013 21:17

Altered Protein Levels of iNOS and IRF-1 by 5AZ

Sci Rep, minor revision

*p<0.05

5AZ increases the stability of IRF1 protein

Localization of IRF-1 in RAW264.7 Cells

IRF1-expressing macrophages in infarct myocardium

SD rats (weighing 200-230 g) After 1d of MI, 5AZ (2.5 mg/kg of BW) every other d via ip for 2w

Population of Macrophages

Sumoylation of IRF1 by 5AZ

LPS with or without 5AZ for another 24h

Small Ubiquitin-like Modifier (SUMO)

Ubc9 and PIAS3 are SUMO-1 conjugating enzymes essential for sumoylation of IRF1

HeLa cells

RAW264.7 cells

5AZ potentiates sumoylation of IRF1

LPS 24h

LPS + 5AZ 24hr

c-myc-IRF1 and flag-SUMO-1 transfected into 293T cells LPS or LPS+5AZ for 24 h

Proposed model of IRF1 sumoylation in LPS-stimulated macrophages

Modulation of Macrophage Polarization

- 1. Macrophage plasticity and polarized activation provides a basis for macrophage-centered diagnostic and therapeutic strategies.
- 2. Modulation of macrophage polarization has emerged as a critical control point of inflammation in cardiovascular diseases.

npg

www.nature.com/gt

ORIGINAL ARTICLE More Powerful Macrophage-specific Promotor A macrophage-specific synthetic promoter for therapeutic application of adiponectin

WS Kang^{1,2,5}, JS Kwon^{1,3,5}, HB Kim¹, H-y Jeong¹, HJ Kang¹, MH Jeong^{3,4}, JG Cho⁴, JC Park⁴, YS Kim^{1,3} and Y Ahn^{1,3,4}

